Принцип внутреннего сгорания. Принцип работы двс и его основные компоненты. Полный цикл работы двигателя

За время своего существования инженерная мысль человечества изобрела различные типы двигателей, многие из которых применяются до сих пор, но некоторые из них стали лишь историческим фактом.

На данный момент все типы двигателей разделяются на следующие типы:

  • Электрические;
  • Гидравлические;
  • Тепловые.

Их название в первую очередь зависит от того, какой тип энергии они преобразуют в работу. К примеру, работа теплового двигателя основана на превращении энергии нагрева в механическое движение. Они в свою очередь бывают также двух типов:

  • С внешним сгоранием топлива. К ним относятся паровые моторы, а также двигатель Стирлинга.
  • С внутренним сгоранием. Их устанавливают в технику, начиная от транспортной авиации, морских перевозок и заканчивая автомобильным транспортом.

Именно двигателями внутреннего сгорания оборудовано большинство транспортных средств, используемых во всем мире. В этой статье мы расскажем о видах ДВС, а также об устройстве и работе ДВС поршневого типа.

ДВС, что это такое в машине?

Двигатель внутреннего сгорания, сокращенно ДВС - это мотор, тепловая машина, где химическая энергия углеводородного топлива, жидкого или газообразного, которое сгорает в рабочей камере сгорания, превращается в полезную работу. ДВС является "сердцем" автомобиля, поскольку именно в двигателе вырабатываемое тепло превращается в механическую энергию движения.

Каждый, кто задается вопросом о ДВС, что это такое в машине, должен понимать, что современный технический прогресс создал большое разнообразие видов двигателей внутреннего сгорания.

Виды ДВС

В зависимости от типа рабочего механизма все разнообразие ДВС можно разделить на несколько категорий, встречаются:

  • Газотурбинные;
  • Роторные;
  • Поршневые.

Именно за счет этих механизмов в камере сгорания может осуществляться процесс превращения тепловой энергии в движущую силу, собственно за счет поршня, ротора или турбины. Давайте рассмотрим принцип работы каждого типа ДВС более подробно.

Газотурбинный двигатель

Работа газотурбинного двигателя основана на том, что топливо, воспламеняясь, толкает лопасти турбины. Другими словами происходит вращение лопастей за счет расширяющегося газа. И чем выше температура горения топлива, тем больше КПД у данного двигателя.

В свою очередь различают одновальные и двухвальные газотурбинные двигатели. Одновальные моторы имеют одну турбину, двухвальные - две. Помимо этого двухвальные агрегаты выдерживают большую нагрузку, чем одновальные. Такие двигатели чаще всего можно встретить в грузовых автомобилях, на кораблях, локомотивах, самолетах.

Роторный ДВС

Принцип работы роторного двигателя основан на постоянном вращении ротора с переменной тактов работы. Роторный двигатель имеет всего лишь один поршень, который одновременно и является ротором. Он вращается в цилиндре специальной формы, приспособленной для него.

Ротор в свою очередь соединен с валом и зубчатой передачей со стартером. Его лопасти при вращении ротора попеременно перекрывают камеру, где и сгорает топливо. Такой мотор имеет сбалансированную конструкцию, небольшой вес и компактный размер. Однако топлива подобный агрегат потребляет на 100 километров пути гораздо больше, чем поршневой двигатель.

Роторный двигатель в разное время ставился на некоторые модели "Мерседес", "Шевроле" и "Ситроен". Также в прошлом двигатель такой конструкции устанавливали и на моделях "ВАЗ-2108" и " ВАЗ-2109". В настоящее время роторный мотор можно увидеть на модели RX8 концерна "Мазда". Однако с 2012 года ее производство прекращено. На данный момент концерн готовит к выпуску новую модель спорткара "Мазда RX-9".

Поршневой двигатель

В ДВС с поршневым принципом работы камера сгорания находится внутри цилиндра, где сам поршень выполняет функцию подвижной части, которая в зависимости от этапа сгорания топлива и такта работы мотора поднимается или опускается. В свою очередь в двигателе автомобиля может находиться определенное число цилиндров. Их поршни через передаточный механизм приводят в движение коленвал, который и преобразует возвратно-поступательное движение поршня во вращательное, что в конечном итоге и позволяет колесам автомобиля вращаться.

Поршневой двигатель самый распространенный в автостроении из-за своих положительных характеристик:

  • Высокой мощности и надежности, в сравнении с другими типами ДВС;
  • Лучшей экономичности;
  • А также благодаря своим достаточно компактным размерам.

Классификация ДВС поршневого типа

Данные типы двигателей можно классифицировать по используемому горючему, встречаются:

  • Бензиновые;
  • Дизельные;
  • Газовые ДВС.

Также двигатели поршневого типа можно классифицировать по системе зажигания, они разделяются:

  1. На ДВС с принудительным воспламенением топлива;
  2. На двигатели, в которых топливо самовоспламеняется от сжатия.

В двигателях первого типа с принудительным возгоранием поджиг горючей смеси происходит за счет электрической искры, которая вырабатывается системой зажигания и подается через свечу прямо в цилиндры. В качестве топлива в них чаще всего используется бензин, реже можно встретить модели, работающие на газе.

Помимо этого бензиновые двигатели могут также различаться и способом подачи горючей смеси в рабочую камеру сгорания. Делятся они на карбюраторные и инжекторные системы.

Дизельные же двигатели относятся к моторам, где возгорание топлива осуществляется самопроизвольно, от сжатия его поршнем. В ДВС этого типа используется преимущественно наиболее экологическое дизельное топливо, но при необходимости двигатель может работать и на других горючих жидкостях, начиная от керосина и мазута, и заканчивая рапсовым и пальмовым маслом.

В свою очередь двигатели внутреннего сгорания также различаются количеством тактов в рабочем цикле. Встречаются четырехтактные и двухтактные моторы. Каждый из них имеет свои как положительные стороны, так и отрицательные. Однако четырехтактные ДВС самые распространенные из всех поршневых. Двухтактные же моторы в современных автомобилях не используются.

Поршневые типы двигателей по расположению цилиндров в моторе также разделяются на несколько подвидов, самыми распространенными из них являются:

  • Рядные двигатели. В ДВС данной конструкции цилиндры выстроены в один ряд, и поршни вращают общий коленвал. Такие двигатели также обозначаются индексом "Rx", где X - число цилиндров.
  • V-образные моторы. Этот тип двигателя отличается от предыдущего тем, что цилиндры в нем расположены напротив друг друга в виде буквы "V", при этом могут образовывать угол от 10 до 120 градусов. Такая конструкция в свою очередь позволяет значительно уменьшить длину двигателя.
  • Vr-образная конструкция представляет собой нечто среднее между рядным и V-образным двигателем. При этом угол между цилиндрами в нем максимально мал, всего 15 градусов.
  • Оппозитные ДВС. Отличительной особенностью этих двигателей является угол между цилиндрами, который составляет целых 180 градусов.

Устройство двигателя внутреннего сгорания

В первую очередь необходимо помнить, что ДВС состоит из множества составляющих элементов и вспомогательных систем, являющихся составной частью двигателя. Для упрощения их можно сгруппировать в следующе группы:

Давайте разберем каждую часть более подробно.

Кривошипно-шатунный механизм

Кривошипно-шатунный механизм – одно из важнейших устройств в поршневом двигателе. Именно этот механизм выполняет две важные функции в машине - вырабатывание тепла и преобразование этой энергии в механическую работу. Состоит данный механизм из следующих деталей:

  • Блок цилиндров;
  • Головка блока цилиндров (ГБЦ);
  • Системы передачи движений от поршней на коленчатый вал;
  • Коленвал с маховиком.

Блок цилиндров является основой, на которой размещается множество навесных частей мотора, таких как ГБЦ и картер. Помимо этого также выполняет функцию каркаса для размещения в нем цилиндров.

Газораспределительный механизм

В свою очередь головка блока цилиндров является основой для такого важного составляющего мотора как механизм газораспределения, который расположен в полости головки, называемой картер. Именно за счет данного механизма в цилиндры своевременно поступает необходимое количество топливной смеси, а также выводятся продукты сгорания из цилиндров. Осуществляется этот процесс за счет клапанов, которые открываются и закрываются в определенный промежуток времени на разных этапах работы двигателя.

Механизм газораспределения состоит также из множества составляющих, к ним относятся такие элементы как:

  • Распределительный вал. В зависимости от конкретного двигателя распредвал может быть один или их может быть два на каждый ряд цилиндров.
  • Клапана, которые делятся на впускные и выпускные.
  • Различные детали привода клапанов и элементов газораспределительного механизма.

Механизм газораспределения приводится в действие от коленвала, связан с распредвалом посредством ремня или цепи, который при вращении с помощью передаточных систем и нажимает на клапана, тем самым заставляя их в нужный момент открываться и закрываться. Все это крепится на специальной площадке головки блока цилиндров. ГБЦ же присоединяется к блоку цилиндров с помощью особых винтов и специальной соединительной прокладки.

Система питания

Работа системы питания заключается в создании горючей смеси путем смешивания воздуха с топливом в определенных пропорциях, оптимальных для работы двигателя.

  1. В карбюраторных моторах процесс смешивания протекает в самом карбюраторе за счет разницы давления, возникающего при работе поршня в цилиндре. Затем данная смесь попадает в рабочие камеры цилиндров через впускной коллектор и клапаны.
  2. В инжекторных ДВС процесс приготовления топливной смеси происходит во впускном коллекторе (встречаются и исключения). В двигателях этой конструкции топливо под высоким давлением впрыскивается в коллектор через такие элементы как форсунки, после чего и происходит смешивание бензина с воздухом.

В отличие от карбюраторного двигателя, насос которого является механическим, в инжекторной системе установлен электрический. Он позволяется обеспечить нужное давление в системе при подаче бензина. Весь этот процесс контролируется электронной системой автомобиля. Путем сбора информации с множества датчиков компьютер решает, в какой момент следует произвести подачу бензина. Одновременно с этим открывается нужный клапан, и готовая топливная смесь подается в цилиндр.

Система зажигания

Система зажигания предусмотрена в конструкциях только бензиновых ДВС. Работа данной системы заключается в поджиге топливной смеси в камере сгорания. Происходит это действие в определенный промежуток времени с помощью свечи зажигания. Между электродами свечи проскакивает электрическая искра, которая и воспламеняет горючую смесь в нужный момент.

В дизельных же двигателях системы зажигания попросту нет, поскольку топливо в ДВС этой конструкции самовоспламеняется за счет сжатия. Вместо свечи в них установлена форсунка высокого давления, которая впрыскивает дизельное топливо под высоким давлением прямо в цилиндр. Причем это происходит в тот момент, когда воздух в цилиндре уже сжат и разогрет порядка до 700 градусов. Именно при этой температуре дизтопливо способно самовоспламеняться, что и происходит практически сразу после его впрыска в цилиндр.

Выхлопная система

Выхлопная система служит для отвода отработанных газов из камеры сгорания наружу. В первую очередь отработавшие газы попадают из головки блока цилиндров в выпускной коллектор. Он собирает газы из каждого цилиндра индивидуально и направляет их в одну трубу.

Далее отработавшие газы проходят через каталитический нейтрализатор, где вредные газы превращаются в менее опасные. Хотя его может и не быть, если автомобиль достаточно старый. Тогда газы поступают сразу в глушитель, который уменьшает шум выхлопа, после чего они просто выходят через выхлопную трубу.

Стоит отметить, что выхлопная труба обычно располагается в задней части автомобиля, поскольку именно оттуда выхлопные газы имеют меньше всего шансов попасть в салон.

Система смазки

Итак, мы с вами познакомились с двумя механизмами, которые применяются в автомобильном двигателе, это кривошипно-шатунный и механизм газораспределения. Стоит обратить внимание на то, что детали этих механизмов соприкасаются друг с другом и двигаются относительно друг друга. Как известно из школьного курса физики трущиеся детали приводят к износу друг друга, то есть они просто изнашиваются и для того чтобы снизить износ, как правило, используют смазывающие средства. В автомобильных двигателях для смазки трущихся деталей, снижения их износа и уменьшения силы трения между деталями для увеличения КПД мотора применяется система смазки.

На этой схеме мы видим часть системы смазки, внизу располагается так называемый картер, это некий поддон в котором находится смазочное масло. В первую очередь масло под давлением подается в масляный фильтр, там очищается и по одним каналам попадает к коренным и шатунным подшипникам коленчатого вала. По другим каналам масло подводится в газораспределительный механизм, поскольку распредвал также испытывает трение и соответственно должен смазываться.

После того как масло сделало свое дело, смазало все необходимые детали, оно стекает по каналам обратно в поддон. Таким образом, происходит круговорот, стекающее масло через сетку попадает в масляный насос, затем в фильтр, после в систему смазки, возвращается в картер и опять по кругу.

Стоит отметить, если по каким-то причинам масло не может попасть в фильтр, то при превышении давления определенного значения открывается редукционный клапан и лишнее масло стекает обратно в поддон, что предотвращает поломку масляного насоса. Также на некоторых мощных моторах в системе предусматриваются еще и радиаторы для того, чтобы это моторное масло охлаждать.

Система охлаждения

Как известно во время работы ДВС выделяется большое количество тепла. Цилиндр двигателя может нагреться до нескольких сотен градусов. Поэтому для того чтобы отвести лишнее тепло от самых разогреваемых деталей применяется система охлаждения двигателя.

Для этого в автомобильных моторах предусмотрены специальные полости, которые заполнены охлаждающей жидкостью. И вот эта жидкость, двигаясь по системе охлаждения, принудительно омывает стенки цилиндров и другие наиболее горячие элементы, отбирая у них тепло.

Практически во всех современных ДВС установлена система охлаждения жидкостного типа, которая состоит из следующих элементов:

  • Радиатор с вентилятором системы охлаждения;
  • Термостата;
  • Водяной помпы;
  • Расширительного бачка;
  • Радиатора и вентиляторов системы отопления салона;

Принцип работы системы охлаждения на всех двигателях примерно одинаков. В целом работает система в двух режимах:

  1. До температуры срабатывания термостата. Когда охлаждающая жидкость в системе течет по малому кругу, протекает лишь в самом двигателе.
  2. Выше температурного порога срабатывания термостата. Когда температура охлаждающей жидкости превышает заданный температурный порог, при котором срабатывает термостат. При этом внутренние каналы системы охлаждения переключаются, и жидкость начинает течь по большому кругу, в частности через радиатор охлаждения.

Температура срабатывания термостата, как правило, составляет около 90 градусов. На разных моделях автомобилей это значение может немного отличаться. Таким образом, данная система не позволяет двигателю перегреться, отводя тепло от самых горячих элементов и поддерживая оптимальную температуру работы мотора.

Такты работы двигателя внутреннего сгорания

Тактом называют процесс, который происходит в цилиндре за одно движение поршня в нижнюю или верхнюю мертвую точку, а сумму этих тактов, как правило, называют рабочим циклом ДВС. Как уже было сказано выше, бывают двухтактные и четырехтактные двигатели.

Четырехтактный ДВС

Если ДВС осуществляет четыре этапа рабочего цикла, то двигатель называют четырехтактным. Давайте разберем каждый такт данного типа двигателя более детально.

  1. Первый такт называется "впуск". Он сопровождается образованием горючей смеси из поступающего топлива и воздуха. Далее происходит подача горючей смеси в камеру сгорания через впускной клапан за счет снижения давления в цилиндре, когда поршень движется вниз.
  2. Второй такт определяется как "сжатие". В этот момент впускной клапан закрывается, и поршень поднимается в верхнюю мертвую точку, сжимая топливо. Таким образом, первые два такта производят один поворот коленвала.
  3. Третий такт имеет название "рабочий ход". Топливо поджигается искрой от системы зажигания, либо оно впрыскивается и самовоспламеняется от сжатия в случае дизельного ДВС. После чего в камере сгорания происходит воспламенение горючей смеси с образованием большого количества продуктов распада. Благодаря этому явлению давление в цилиндре резко увеличивается, опуская при этом поршень в низ. Такое движение поршня запускает второй оборот коленвала.
  4. Последний такт называется "выпуск". Данный процесс сопровождается открытием выпускного клапана, после чего поршень снова поднимается вверх и выхлопные газы просто выводятся из камеры цилиндра через открытый клапан.

Рабочий цикл четырехтактного ДВС, благодаря движению поршней в моторе, позволяет произвести два оборота коленчатого вала, которые в конечном итоге и преобразуются во вращение колес.

Двухтактный мотор

В двухтактных же моторах, полный рабочий цикл протекает всего за два этапа работы поршня, называемых:

  1. Сжатие;
  2. Рабочий ход.

Такт "сжатия" начинается с движения поршня из нижнего положения в верхнее. В этот момент происходит единый процесс газообмена, называемый продувкой, при котором закрывается сначала продувочное, а потом и выпускное отверстие. Далее происходит процесс сжатия топливной смеси поршнем. Одновременно с этим в картере под поршнем создается разряжение, благодаря этому через открытый впускной клапан в кривошипную камеру подается топливная смесь.

Такт "рабочий ход" берет свое начало уже с верхнего положения поршня, когда сжатая горючая смесь воспламеняется от искры. После этого происходит расширение сгорающего топлива, и поршень начинает двигаться в низ. Этим действием поршень также создает давление в картере под кривошипной парой и тем самым закрывает впускной клапан, не позволяя газам попасть обратно во впускной коллектор.

Рейтинг 4.75

Двигатель внутреннего сгорания (ДВС) - на сегодняшний день самый распространенный тип двигателя. Перечень транспортных средств, в которые он устанавливается просто огромен. ДВС можно обнаружить на автомобилях, вертолетах, танках, тракторах, катерах и т. д.

Двигатель внутреннего сгорания - это тепловой двигатель, в котором происходит преобразование части химической энергии сгорающего топлива в механическую энергию. Существенное разделение двигателей на категории это деление по рабочему циклу на 2-х и 4-х тактные; по способу приготовления горючей смеси - с внешним (в частности карбюраторные) и внутренним (например дизели) смесеобразованием; по виду преобразователя энергии ДВС делятся на поршневые, турбинные, реактивные и комбинированные.

Коэффициент полезного действия двигателя внутреннего сгорания - 0,4-0,5. Первый двс сконструирован Э. Ленуаром в 1860. Мы рассмотрим в данной статье наиболее часто применяемый в автомобилестроении четырехтактный двигатель внутреннего сгорания.

Впервые четырехтактный двигатель был представлен Николаусом Отто в 1876 году и поэтому он также носит название двигателя с циклом Отто. Более грамотное название такого цикла - четырехтактный цикл. В настоящее время это наиболее распространенный вид двигателя для автомобилей.

Принцип работы двигателя внутреннего сгорания (ДВС)

Действие поршневого двигателя внутреннего сгорания основано на использовании давления теплового расширения нагретых газов во время движения поршня. Нагревание газов происходит в результате сгорания в цилиндре топливо-воздушной смеси. Для повторения цикла отработанную газовую смесь нужно выпустить в конце движения поршня и заполнить новой порцией топлива и воздуха. В крайнем положении происходит поджиг топлива от искры свечи. Впуск и выпуск топлива и продуктов сгорания происходят через клапана, управляемые механизмом газораспределения и системой подачи топлива.


Таким образом, цикл работы двигателя делится на следующие этапы:

  • Такт впуска.
  • Такт сжатия.
  • Такт расширения, или рабочий ход.
  • Такт выпуска.

Усилие от двигающегося поршня цилиндра через коленчатый вал преобразуется во вращательное движение вала двигателя. Часть энергии вращения расходуется на возвращения поршней в исходное состояние, для совершения нового цикла. Конструкция вала определяет различное положение поршней в разных цилиндрах в каждый конкретный момент времени. Таким образом чем больше в двигателе цилиндров, тем, в общем случае, равномернее вращение его вала.

По расположению цилиндров двигатели делятся на несколько типов:

а) Двигатели с вертикльным или наклонным расположением цилиндров в один ряд


Б) V-образные с взаимным расположением цилиндров под углом в форме латинской буквы V:


D) Двигатели с противолежащими цилиндрами. Он носит название "оппозитный", цилиндры в нем расположены под углом 180 градусов:


Механизм газораспределения двигателя на такте выпуска обеспечивает очистку цилиндров от продуктов сгорания (отработавших газов) и наполнение цилиндров новой порцией топливно-воздушной смеси на такте впуска.

Система зажигания производит высоковольтный разряд и передает его свече цилиндра через высоковольтный провод. Управление поджигом осуществляет трамблер, провода от которого подходят к каждой свече. Трамблер устроен таким образом, чтобы разряд возникал именно в том цилиндре, где поршень в данный момент проходит точку наибольшего сжатия топливной смеси. Если смесь воспламенится раньше, то давление газа сработает против его хода, если позже - мощность выделяемая расширением газов будет использована не полностью.

Для запуска двигателя, ему необходимо придать начальное движение. Для этого используется система старта (см. статью "как работает стартер") от электрического двигателя - стартера.

Преимущества бензиновых двигателей

Недостатки бензиновых двигателей

  • Больший чем у дизеля расход топлива, и более высокие требования к его качеству;
  • Необходимость наличия и постоянной работы системы зажигания топлива;
  • Наибольшая мощность бензиновых ДВС достигается в узком диапазоне оборотов.

Двигатель внутреннего сгорания — это одно из тех изобретений, которые в корне перевернули нашу жизнь — с лошадиных повозок люди смогли пересесть на быстрые и мощные автомобили.

Первые ДВС обладали малой мощностью, а коэффициент полезного действия не доходил даже до десяти процентов, но неутомимые изобретатели — Ленуар, Отто, Даймлер, Майбах, Дизель, Бенц и множество других — привносили что-то новое, благодаря чему имена многих увековечены в названиях известных автомобильных компаний.

ДВС прошли длительный путь развития от коптящих и часто ломающихся примитивных моторов, до сверхсовременных битурбированных двигателей, но принцип их работы остался все тот же — теплота сгорания топлива преобразуется в механическую энергию.

Название «двигатель внутреннего сгорания» используется потому, что топливо сгорает в середине двигателя, а не снаружи, как в двигателях внешнего сгорания — паровых турбинах и паровых машинах.

Благодаря этому ДВС получили множество положительных характеристик:

  • они стали намного легче и экономичнее;
  • стало возможным избавиться от дополнительных агрегатов для передачи энергии сгорания топлива или пара к рабочим частям двигателя;
  • топливо для ДВС обладает заданными параметрами и позволяет получать значительно больше энергии, которую можно преобразовать в полезную работу.

Устройство ДВС

Вне зависимости от того, на каком топливе работает двигатель — бензин, дизель, пропан-бутан или экотопливо на основе растительных масел — главным действующим элементом является поршень, который находится внутри цилиндра. Поршень похож на металлический перевернутый стакан (скорее подойдет сравнение с бокалом для виски — с плоским толстым дном и прямыми стенками), а цилиндр — на небольшой кусок трубы, внутри которой и ходит поршень.

В верхней плоской части поршня имеется камера сгорания — углубление круглой формы, именно в нее попадает топливно воздушная смесь и здесь же детонирует, приводя поршень в движение. Это движение передается на коленчатый вал с помощью шатунов. Шатуны верхней своей частью прикреплены к поршню с помощью поршневого пальца, который просовывается в два отверстия по бокам поршня, а нижней — к шатунной шейке коленчатого вала.

Первые ДВС имели всего один поршень, но и этого было достаточно, чтобы развить мощность в несколько десятков лошадиных сил.

В наше время тоже применяются двигатели с одним поршнем, например пусковые двигатели для тракторов, которые выполняют роль стартера. Однако больше всего распространены 2-х, 3-х, 4-х, 6-и и 8-цилиндровые двигатели, хотя выпускаются двигатели на 16 цилиндров и более.

Поршни и цилиндры находятся в блоке цилиндров. От того, как расположены цилиндры по отношению к друг другу и к другим элементам двигателя, выделяют несколько видов ДВС:

  • рядные — цилиндры расположены в один ряд;
  • V-образные — цилиндры расположены друг против друга под углом, в разрезе напоминают букву «V»;
  • U-образные — два объединенных между собой рядных двигателя;
  • X-образные — ДВС со сдвоенными V-образными блоками;
  • оппозитные — угол между блоками цилиндров составляет 180 градусов;
  • W-образные 12-цилиндровые — три или четыре ряда цилиндров установленные в форме буквы «W»;
  • звездообразные двигатели — применяются в авиации, поршни расположены радиальными лучами вокруг коленчатого вала.

Важным элементом двигателя является коленчатый вал, на который передается возвратно-поступательное движение поршня, коленвал преобразует его во вращение.


Когда на тахометре отображаются обороты двигателя, то это как раз и есть количество вращений коленвала в минуту, то есть он даже на самых низких оборотах вращается со скоростью 2000 оборотов в минуту. С одной стороны коленвал соединен с маховиком, от которого вращение через сцепление подается на коробку передач, с другой стороны — шкив коленвала, связанный с генератором и газораспределительным механизмом через ременную передачу. В более современных авто шкив коленвала связан также со шкивами кондиционера и гидроусилителя руля.

Топливо подается в двигатель через карбюратор или инжектор. Карбюраторные ДВС уже отживают свое из-за несовершенства конструкции. В таких ДВС идет сплошной поток бензина через карбюратор, затем топливо смешивается во впускном коллекторе и подается в камеры сгорания поршней, где детонирует под действием искры зажигания.

В инжекторных двигателях непосредственного впрыска топливо смешивается с воздухом в блоке цилиндров, куда подается искра от свечи зажигания.

Газораспределительный механизм отвечает за согласованную работу системы клапанов. Впускные клапаны обеспечивают своевременное поступление топливновоздушной смеси, а выпускные отвечают за выведение продуктов сгорания. Как мы уже писали раньше, такая система используется в четырехтактных двигателях, тогда как в двухтактных необходимость в клапанах отпадает.

На данном видео показано как устроен двигатель внутреннего сгорания, какие функции выполняет и как он это делает.

Устройство четырехтактного ДВС

На сегодняшний день двигатель внутреннего сгорания (ДВС) или как его еще называют "атмосферник" - основной тип двигателя, который широко применяется в автомобильной индустрии. Что такое ДВС? Это - многофункциональный тепловой агрегат, который при помощи химических реакций и законов физики преобразует химическую энергию топливной смеси в механическую силу (работу).

Двигатели внутреннего сгорания делятся на:

  1. Поршневой ДВС.
  2. Роторно-поршневой ДВС.
  3. Газотурбинный ДВС.

Поршневой двигатель внутреннего сгорания - самый популярный среди вышеперечисленных двигателей, он завоевал мировое признание и уже много лет лидирует в автоиндустрии. Предлагаю более детально рассмотреть устройство ДВС , а также принцип его работы.

К преимуществам поршневого двигателя внутреннего сгорания можно отнести:

  1. Универсальность (применение на различных транспортных средствах).
  2. Высокий уровень автономной работы.
  3. Компактные размеры.
  4. Приемлемая цена.
  5. Способность к быстрому запуску.
  6. Небольшой вес.
  7. Возможность работы с различными видами топлива.

Кроме "плюсов" имеет двигатель внутреннего сгорания и ряд серьезных недостатков, среди которых:

  1. Высокая частота вращения коленвала.
  2. Большой уровень шума.
  3. Слишком большой уровень токсичности в выхлопных газах.
  4. Маленький КПД (коэффициент полезного действия).
  5. Небольшой ресурс службы.

Двигатели внутреннего сгорания различаются по типу топлива, они бывают:

  1. Бензиновыми.
  2. Дизельными.
  3. А также газовыми и спиртовыми.

Последние два можно назвать альтернативными, поскольку на сегодняшний день они не получили широкого применения.

Спиртовой ДВС работающий на водороде - самый перспективный и экологичный, он не выбрасывает в атмосферу вредный для здоровья "СО2", который содержится в отработанных газах поршневых двигателей внутреннего сгорания.

Поршневой ДВС состоит из следующих подсистем:

  1. Кривошипно-шатунный механизм (КШМ).
  2. Система впуска.
  3. Топливная система.
  4. Система смазки.
  5. Система зажигания (в бензиновых моторах).
  6. Выпускная система.
  7. Система охлаждения.
  8. Система управления.

Корпус двигателя состоит из нескольких частей, в которые входят: блок цилиндров, а также головка блока цилиндров (ГБЦ). Задача КШМ - преобразовать возвратно-поступательные движения поршня во вращательные движения коленвала. Газораспределительный механизм необходим ДВС для обеспечения своевременного впуска в цилиндры топливно-воздушной смеси и такой же своевременный выпуск отработанных газов.

Впускная система служит для своевременной подачи воздуха в двигатель, который необходим для образования топливно-воздушной смеси. Топливная система осуществляет подачу в двигатель топлива, в тандеме две этих системы работают над образованием топливно-воздушной смеси после чего она подается посредством системы впрыска в камеру сгорания.

Воспламенение топливно-воздушной смеси происходит благодаря системе зажигания (в бензиновых ДВС), в дизельных моторах воспламенение происходит за счет сжатия смеси и свечей накала.

Система смазки как уже понятно из названия служит для смазки трущихся деталей, снижая тем самым их износ, увеличивая срок их службы и отводя тем самым от их поверхностей температуру. Охлаждение нагревающихся поверхностей и деталей обеспечивает система охлаждения, она отводит температуру при помощи охлаждающей жидкости по своим каналам, которая проходя через радиатор - охлаждается и повторяет цикл. Система выпуска обеспечивает вывод отработанных газов из цилиндров ДВС посредством , которая входит в состав этой системы, снижает шум сопровождаемый выброс газов и их токсичность.

Система управления двигателем (в современных моделях за это отвечает электронный блок управления (ЭБУ) или бортовой компьютер) необходима для электронного управление всеми вышеописанными системами и обеспечения их синхронности.

Как работает двигатель внутреннего сгорания?

Принцип работы ДВС базируется на эффекте теплового расширения газов, которое возникает во время сгорания топливно-воздушной смеси, за счет чего осуществляется движение поршня в цилиндре. Рабочий цикл двигателя внутреннего сгорания происходит за два оборота коленвала и состоит из четырех тактов, отсюда и название - четырехтактный двигатель.

  1. Первый такт - впуск.
  2. Второй - сжатие.
  3. Третий - рабочий ход.
  4. Четвертый - выпуск.

Во время первых двух тактов - впуска и рабочего такта, движется вниз, за два других сжатие и выпуск – поршень идет вверх. Рабочий цикл каждого из цилиндров настроен таким образом чтобы не совпадать по фазам, это необходимо для того чтобы обеспечить равномерность работы двигателя внутреннего сгорания. Есть в мире и другие двигатели, рабочий цикл которых происходит всего за два такта – сжатие и рабочий ход, этот двигатель называется двухтактным.

На такте впуска топливная система и впускная образуют топливно-воздушную смесь, которая образуется во впускном коллекторе или непосредственно в камере сгорания (все зависит от типа конструкции). Во впускном коллекторе в случае с центральным и распределенным впрыском бензиновых ДВС. В камере сгорания в случае с непосредственным впрыском в бензиновых и дизельных моторах. Топливно-воздушная смесь или воздух во время открытия впускных клапанов ГРМ подается в камеру сгорания за счет разряжения, которое возникает во время движения поршня вниз.

Впускные клапаны закрываются на такте сжатия, после чего топливно-воздушная смесь в цилиндрах двигателя сжимается. Во время такта "рабочий ход" смесь воспламеняется принудительно или самовоспламеняется. После возгорания в камере возникает большое давление, которое создают газы, это давление воздействует на поршень, которому ничего не остается как начать двигаться вниз. Это движение поршня в тесном контакте с кривошипно-шатунным механизмом приводят в движение коленчатый вал, который в свою очередь образует крутящий момент, приводящий колеса автомобиля в движение.

Такт "выпуск" , после чего отработанные газы освобождают камеру сгорания, а после и выпускную систему, уходя охлажденными и частично очищенными в атмосферу.

Короткое резюме

После того как мы рассмотрели принцип работы двигателя внутреннего сгорания можно понять почему ДВС обладает низким КПД, который составляет примерно 40%. В то время как в одном цилиндре происходит полезное действие, остальные цилиндры грубо говоря бездействуют, обеспечивая работу первого тактами: впуск, сжатие, выпуск.

На этом у меня все, надеюсь вам все понятно, после прочтения данной статьи вы легко сможете ответить на вопрос, что такое ДВС и как устроен двигатель внутреннего сгорания. Спасибо за внимание!

Вы можете задать интересующие вас вопросы по теме представленной статьи, оставив свой комментарий внизу страницы.

Вам ответит заместитель генерального директора автошколы «Мустанг» по учебной работе

Преподаватель высшей школы, кандидат технических наук

Кузнецов Юрий Александрович

Часть 1. ДВИГАТЕЛЬ И ЕГО МЕХАНИЗМЫ

Двигатель является источником механической энергии.

На подавляющем большинстве автомобилей применяется двигатель внутреннего сгорания.

Двигатель внутреннего сгорания — это устройство, в котором химическая энергия топлива превращается в полезную механическую работу.

Автомобильные двигатели внутреннего сгорания классифицируются:

По роду применяемого топлива:

Легкие жидкие (газ, бензин),

Тяжелые жидкие (дизельное топливо).

Бензиновые двигатели

Бензиновые карбюраторные. Смесь топлива с воздухом готовится в карбюраторе или во впускном коллекторе при помощи распыляющих форсунок (механических или электрических), далее смесь подаётся в цилиндр, сжимается, а затем поджигается при помощи искры, проскакивающей между электродами свечи .

Бензиновые инжекторные Смесеобразование происходит путём впрыска бензина во впускной коллектор или непосредственно в цилиндр при помощи распыляющих форсунок ( инжектор ов). Существуют системы одноточечного и распределённого впрыска различных механических и электронных систем. В механических системах впрыска дозация топлива осуществляется плунжерно — рычажным механизмом с возможностью электронной корректировки состава смеси. В электронных же системах смесеобразование осуществляется под управлением электронного блока управления (ЭБУ) впрыском, управляющим электрическими бензиновыми вентилями.

Газовые двигатели

Двигатель сжигает в качестве топлива углеводороды, находящиеся в газообразном состоянии. Чаще всего газовые двигатели работаю на пропане, но есть и другие, работающие на попутных (нефтяных), сжиженном, доменных, генераторных и других видах газообразного топлива.

Принципиальное отличие газовых двигателей от бензиновых и дизельных в более высокой степени сжатия. Применение газа позволяет избежать излишнего износа деталей, так как процессы сгорания топливовоздушной смеси происходят более правильно, благодаря исходному (газообразному) состоянию топлива. Также газовые двигатели более экономичны, так как газ стоит дешевле нефти и легче добывается.

К несомненным преимуществам двигателей на газе стоит отнести безопасность и бездымность выхлопа.

Сами по себе газовые двигатели редко выпускаются серийно, чаще всего они появляются после переделки традиционных ДВС, путем оборудования их специальным газовым оборудованием.

Дизельные двигатели

Специальное дизельное топливо впрыскивается в определенный момент (не доходя до верхней мертвой точки) в цилиндр под высоким давлением через форсунку. Горючая смесь образуется непосредственно в цилиндре по мере впрыска топлива. Движение поршня внутрь цилиндра вызывает нагрев и последующее воспламенение топливовоздушной смеси. Дизельные двигатели являются низкооборотными и характеризуются высоким вращающим моментом на валу двигателя. Дополнительным преимуществом дизельного двигателя является то, что, в отличие от двигателей с принудительным зажиганием, он не нуждается в электричестве для работы (в автомобильных дизельных двигателях электрическая система используется только для запуска), и, как следствие, менее боится воды.

По способу воспламенения:

От искры (бензиновые),

От сжатия (дизельные).

По числу и расположению цилиндров:

Рядные,

Оппозитные,

V - образные,

VR - образные,

W - образные.

Рядный двигатель


Этот двигатель известен с самого начала автомобильного двигателестроения. Цилиндры расположены в один ряд перпендикулярно коленчатому валу.

Достоинство: простота конструкции

Недостаток: при большом количестве цилиндров получается очень длинный агрегат, который невозможно расположить поперечно относительно продольной оси автомобиля.

Оппозитный двигатель


Горизонтально-оппозитные двигатели отличаются меньшей габаритной высотой, чем двигатели с рядным или V-образным расположением цилиндров, что позволяет снизить центр тяжести всего автомобиля. Легкий вес, компактность конструкции и симметричность компоновки уменьшает момент рыскания автомобиля.

V-образный двигатель


Чтобы уменьшить длину двигателей, в этом двигателе цилиндры расположены под углом от 60 до 120 градусов, при этом продольные оси цилиндров проходят через продольную ось коленчатого вала.

Достоинство: относительно короткий двигатель

Недостатки: двигатель относительно широк, имеет две раздельные головки блока, повышенная стоимость изготовления, слишком большой рабочий объем.

VR-двигатели


В поисках компромиссного решения исполнения двигателей для легковых автомобилях среднего класса пришли к созданию VR-двигателей. Шесть цилиндров под углом 150 градусов образуют относительно узкий и в целом короткий двигатель. Кроме того, такой двигатель имеет только одну головку блока.

W-двигатели


В двигателях W-семейства в одном двигателе соединены два ряда цилиндров в VR-исполнеии.

Цилиндры каждого ряда размещены под углом 150 один к другому, а сами ряды цилиндров расположены под углом 720.

Стандартный автомобильный двигатель состоит из двух механизмов и пяти систем.

Механизмы двигателя

Кривошипно-шатунный механизм,

Газораспределительный механизм.

Системы двигателя

Система охлаждения,

Система смазки,

Система питания,

Система зажигания,

Система выпуска отработавших газов.

Кривошипно-шатунный механизм

Кривошипно-шатунный механизм предназначен для преобразования возвратно-поступательного движения поршня в цилиндре во вращательное движение коленчатого вала двигателя.

Кривошипно-шатунный механизм состоит:

Блока цилиндров с картером,

Головки блока цилиндров,

Поддона картера двигателя,

Поршней с кольцами и пальцами,

Шатунов,

Коленчатого вала,

Маховика.

Блок цилиндров


Является цельнолитой деталью, объединяющей собой цилиндры двигателя. На блоке цилиндров имеются опорные поверхности для установки коленчатого вала, к верхней части блока, как правило, крепится головка блока цилиндров, нижняя часть является частью картера. Таким образом, блок цилиндров является основой двигателя, на которую навешиваются остальные детали.

Отливается как правило — из чугуна, реже — алюминия.

Блоки, изготовленные из этих материалов, отнюдь не равноценны по своим свойствам.

Так, чугунный блок наиболее жёсткий, а значит — при прочих равных выдерживает наиболее высокую степень форсировки и наименее чувствителен к перегреву. Теплоёмкость чугуна примерно вдвое ниже, чем алюминия, а значит двигатель с чугунным блоком быстрее прогревается до рабочей температуры. Однако, чугун весьма тяжёл (в 2,7 раза тяжелее алюминия), склонен к коррозии, а его теплопроводность примерно в 4 раза ниже, чем у алюминия, поэтому у двигателя с чугунным картером система охлаждения работает в более напряжённом режиме.

Алюминиевые блоки цилиндров лёгкие и лучше охлаждаются, однако в этом случае возникает проблема с материалом, из которого выполнены непосредственно стенки цилиндров. Если поршни двигателя с таким блоком сделать из чугуна или стали, то они очень быстро износят алюминиевые стенки цилиндров. Если же сделать поршни из мягкого алюминия, то они просто «схватятся» со стенками, и двигатель мгновенно заклинит.

Цилиндры в блоке цилиндров могут являться как частью отливки блока цилиндров, так и быть отдельными сменными втулками, которые могут быть «мокрыми» или «сухими». Помимо образующей части двигателя, блок цилиндров несет дополнительные функции, такие как основа системы смазки — по отверстиям в блоке цилиндров масло под давлением подается к местам смазки, а в двигателях жидкостного охлаждения основа системы охлаждения — по аналогичным отверстиям жидкость циркулирует по блоку цилиндров.

Стенки внутренней полости цилиндра служат также направляющими для поршня при его перемещениях между крайними поло-жениями. Поэтому длина образующих цилиндра предопределяется величиной хода поршня.

Цилиндр работает в условиях переменных давлений в надпорш-невой полости. Внутренние стенки его соприкасаются с пламенем и горячими газами, раскаленными до температуры 1500—2500°С. К тому же средняя скорость скольжения поршневого комплекта по стенкам цилиндра в автомобильных двигателях достигает 12— 15 м/сек при недостаточной смазке. Поэтому материал, употребляемый для изготовления цилиндров, должен обладать большой механической прочностью, а сама конструкция стенок повышенной жесткостью. Стенки цилиндров должны хорошо противостоять истиранию при ограниченной смазке и обладать общей высокой стойкостью против других возможных видов износа

В соответствии с этими требованиями в качестве основного материала для цилиндров применяют перлитный серый чугун с не-большими добавками легирующих элементов (никель, хром и др.). Применяют также высоколегированный чугун, сталь, магниевые и алюминие-вые сплавы.

Головка блока цилиндров


Является второй по значимости и по величине составной частью двигателя. В головке расположены камеры сгорания, клапаны и свечи цилиндров, в ней же на подшипниках вращается распределительный вал с кулачками. Так же, как и в блоке цилиндров, в его головке имеются водяные и масляные каналы и полости. Головка крепится к блоку цилиндров и, при работе двигателя, составляет с блоком единое целое.

Поддон картера двигателя


Закрывает снизу картер двигателя (отливается как единое целое с блоком цилиндров) и используется как резервуар для масла и защищает детали двигателя от загрязнения. В нижней части поддона имеется пробка для слива моторного масла. Поддон крепится к картеру болтами. Для предотвращения утечки масла между ними устанавливается прокладка.

Поршень

Поршень — деталь цилиндрической формы, совершающая возвратно поступательное движение внутри цилиндра и служащая для превращения изменения давления газа, пара или жидкости в механическую работу, или наоборот — возвратно-поступательного движения в изменение давления.

Поршень подразделяется на три части, выполняющие различные функции:

Днище,

Уплотняющая часть,

Направляющая часть (юбка).

Форма днища зависит от выполняемой поршнем функции. К примеру, в двигателях внутреннего сгорания форма зависит от расположения свечей, форсунок, клапанов, конструкции двигателя и других факторов. При вогнутой форме днища образуется наиболее рациональная камера сгорания, но в ней более интенсивно происходит отложение нагара. При выпуклой форме днища увеличивается прочность поршня, но ухудшается форма камеры сгорания.

Днище и уплотняющая часть образуют головку поршня. В уплотняющей части поршня располагаются компрессионные и маслосъёмные кольца.

Расстояние от днища поршня до канавки первого компрессионного кольца называют огневым поясом поршня. В зависимости от материала, из которого сделан поршень, огневой пояс имеет минимально допустимую высоту, уменьшение которой может привести к прогару поршня вдоль наружной стенки, а также разрушению посадочного места верхнего компрессионного кольца.

Функции уплотнения, выполняемые поршневой группой, имеют большое значение для нормальной работы поршневых двигателей. О техническом состоянии двигателя судят по уплотняющей способности поршневой группы. Например, в автомобильных двигателях не допускается, чтобы расход масла из-за угара его вследствие избыточного проникновения (подсоса) в камеру сгорания превышал 3% от расхода топлива.

Юбка поршня (тронк) является его направляющей частью при движении в цилиндре и имеет два прилива (бобышки) для установки поршневого пальца. Для снижения температурных напряжений поршня с двух сторон, где расположены бобышки, с поверхности юбки, удаляют металл на глубину 0,5-1,5 мм. Эти углубления, улучшающие смазывание поршня в цилиндре и препятствующие образованию задиров от температурных деформаций, называются «холодильниками». В нижней части юбки также может располагаться маслосъемное кольцо.



Для изготовления поршней применяются серые чугуны и алюминиевые сплавы.

Чугун

Достоинства: Поршни из чугуна прочны и износостойки.

Благодаря небольшому коэффициенту линейного расширения они могут работать с относительно малыми зазорами, обеспечивая хорошее уплотнение цилиндра.

Недостатки: Чугун имеет довольно большой удельный вес. В связи с этим область применения чугунных поршней ограничивается сравнительно тихоходными двигателями, в которых силы инерции возвратно движущихся масс не превосходят одной шестой от силы давления газов на днище поршня.

Чугун имеет низкую теплопроводность, поэтому нагрев днища у чугунных поршней достигает 350—400 °C. Такой нагрев нежелателен особенно в карбюраторных двигателях, так как он служит причиной возникновения калильного зажигания.

Алюминий

Подавляющее большинство современных автомобильных двигателей имеют алюминиевые поршни.

Достоинства:

Малая масса (как минимум на 30 % меньше по сравнению с чугунными);

Высокая теплопроводность (в 3-4 раза выше теплопроводности чугуна), обеспечивающая нагрев днища поршня не более 250 °C, что способствует лучшему наполнению цилиндров и позволяет повысить степень сжатия в бензиновых двигателях;

Хорошие антифрикционные свойства.

Шатун


Шатун — деталь, соединяющая поршень (посредством поршневого пальца ) и шатунную шейку коленчатого вала . Служит для передачи возвратно-поступательных движений от поршня на коленчатый вал. Для меньшего износа шатунных шеек коленчатого вала между ними и шатунами помещают специальные вкладыши, которые имеют антифрикционное покрытие .

Коленчатый вал


Коленчатый вал — детальсложной формы, имеющая шейки для крепления шатунов , от которых воспринимает усилия и преобразует их в крутящий момент .

Коленчатые валы изготовляют из углеродистых, хромомарганцевых, хромоникельмолибденовых, и других сталей, а также из специальных высокопрочных чугунов.

Основные элементы коленчатого вала

Коренная шейка — опора вала, лежащая в коренном подшипнике , размещённом в картере двигателя.

Шатунная шейка — опора, при помощи которой вал связывается с шатунами (для смазки шатунных подшипников имеются масляные каналы).

Щёки — связывают коренные и шатунные шейки.

Передняя выходная часть вала (носок) — часть вала, на которой крепится зубчатое колесо или шкив отбора мощности для привода газораспределительного механизма (ГРМ) и различных вспомогательных узлов, систем и агрегатов.

Задняя выходная часть вала (хвостовик) — часть вала, соединяющаяся с маховиком или массивной шестернёй отбора основной части мощности.

Противовесы — обеспечивают разгрузку коренных подшипников от центробежных сил инерции первого порядка неуравновешенных масс кривошипа и нижней части шатуна.

Маховик


Массивный диск с зубчатым венцом. Зубчатый венец необходим для запуска двигателя (шестерня стартера входит в зацепление с шестерней маховика и раскручивает вал двигателя). Также маховик служит для уменьшения неравномерности вращения коленчатого вала.

Газораспределительный механизм

Предназначен для своевременного впуска в цилиндры горючей смеси и выпуска отработавших газов.

Основными деталями газораспределительного механизма являются:

Распределительный вал,

Впускные и выпускные клапана.

Распределительный вал


По расположению распределительного вала выделяют двигатели:

С распредвалом, расположенным в блоке цилиндров (Cam-in-Block);

С распредвалом, расположенным в головке блока цилиндров (Cam-in-Head).

В современных автомобильных двигателях, как правило, расположен в верхней части головки блока цилиндров и соединён со шкивом или зубчатой звёздочкой коленвала ремнём или цепью ГРМ соответственно и вращается с вдвое меньшей частотой, чем последний (на 4-тактных двигателях).


Составной частью распредвала являются его кулачки , количество которых соответствует количеству впускных и выпускных клапанов двигателя. Таким образом, каждому клапану соответствует индивидуальный кулачок, который и открывает клапан, набегая на рычаг толкателя клапана. Когда кулачок «сбегает» с рычага, клапан закрывается под действием мощной возвратной пружины.

Двигатели с рядной конфигурацией цилиндров и одной парой клапанов на цилиндр обычно имеют один распределительный вал (в случае четырёх клапанов на каждый цилиндр, два), а V-образные и оппозитные — либо один в развале блока, либо два, по одному на каждый полублок (в каждой головке блока). Двигатели, имеющие 3 клапана на цилиндр (чаще всего два впускных и один выпускной), обычно имеют один распредвал на головку блока, а имеющие 4 клапана на цилиндр (два впускных и 2 выпускных) имеют 2 распредвала в каждой головке блока.

Современные двигатели иногда имеют системы регулировки фаз газораспределения, то есть механизмы, которые позволяют проворачивать распредвал относительно приводной звездочки, тем самым изменяя момент открытия и закрытия (фазу) клапанов, что позволяет более эффективно наполнять рабочей смесью цилиндры на разных оборотах.

Клапана


Клапан состоит из плоской головки и стержня, соединенных между собой плавным переходом. Для лучшего наполнения цилиндров горючей смесью диаметр головки впускного клапаны делают значительно больше, чем диаметр выпускного. Так как клапаны работают в условиях высоких температур, их изготавливают из высококачественных сталей. Впускные клапаны делают из хромистой стали, выпускные из жаростойкой, так как последние соприкасаются с горючими отработавшими газами и нагреваются до 600 - 800 0 С. Высокая температура нагрева клапанов вызывает необходимость установки в головке цилиндров специальных вставок из жаростойкого чугуна, которые называются седлами.

Принцип работы двигателя

Основные понятия

Верхняя мертвая точка - крайнее верхнее положение поршня в цилиндре.

Нижняя мертвая точка - крайнее нижнее положение поршня в цилиндре.

Ход поршня - расстояние, которое поршень проходит от одной мертвой точки до другой.

Камера сгорания - пространствомежду головкой блока цилиндров и поршнем при его нахождении в верхней мертвой точке.

Рабочий объем цилиндра - пространство, освобождаемое поршнем при его перемещении из верхней мертвой точки в нижнюю мертвую точку.

Рабочий объем двигателя - сумма рабочих объемов всех цилиндров двигателя. Выражается в литрах, поэтому часто называется литражом двигателя.

Полный объем цилиндра - сумма объема камеры сгорания и рабочего объема цилиндра.

Степень сжатия - показывает во сколько раз полный объем цилиндра больше объема камеры сгорания.

Компрессия -давление в цилиндре в конце такта сжатия.

Такт - процесс (часть рабочего цикла), который происходит в цилиндре за один ход поршня.

Рабочий цикл двигателя

1-ый такт - впуск . При движении поршня вниз в цилиндре образуется разрежение, под действием которого через открытый впускной клапан в цилиндр поступает горючая смесь (смесь топлива с воздухом).

2-ой такт - сжатие . Поршень под действием коленчатого вала и шатуна перемещается вверх. Оба клапана закрыты и горючая смесь сжимается.

3-ий такт - рабочий ход . В конце такта сжатия горючая смесь воспламеняется (от сжатия в дизельном двигателе, от искры свечи в бензиновом двигателе). Под давлением расширяющихся газов поршень перемещается вниз и через шатун приводит во вращение коленчатый вал.

4-ый такт - выпуск . Поршень перемещается вверх, и через открывшийся выпускной клапан выходят наружу отработавшие газы.